Learning Objectives

• Background of Anchorage Zone Design
• Development of Proprietary Anchorages
• Case Study of Anchorage Zone Failure
• Local and General Zones
• Anchorage Zone Design Methods
• Good Detailing Practice
• Design Examples
Presentation Outline

• Introduction
• Case Study of Anchorage Zone Failure
• Development of PT Anchorages
• Design Methods for General Zone
• The Art of Proper Detailing
• Design Examples
• References
Introduction

Timeline of Anchorage Zone Design Development

1855: St. Venant Principle
1924: Mörsch’s Theory
1932: Tesar, M Theory
1935: Bortsch’s Theory
1949: Magnel’s Theory
1953: Guyon’s Theory
1954: Leonhardt, Fritz Theory
1956: Bleich’s and Sievers’s Theory
1960: Iyengar, K.T. Sundara Raja Theory
1960: Sargious, M. Theory
1960: J. Zielinski and R.E. Rowe of Cement and Concrete Association, UK. Conducted Laboratory Test. Two Reports and recommendations were published from this research project.
1990: J. Breen et. al. of University of Texas, Austin conducted Anchorage Zone research and Laboratory Tests as part of NCHRP Project 10-29. The recommendations of the research were adopted by AASHTO LRFD.

Notes: St. Venant, Mörsch’s, Tesar’s, Guyon’s, Magnel’s, and Leonhardt’s work laid out the most significant foundations of anchorage zone design practices we are using today.
Introduction

St. Venant Principle (1855)

The influence of stresses resulted by a local disturbed load in an elastic system dissipates rapidly with a distance d, where d is the depth of the member [14].
Introduction Overview of PT Anchorage Design

➢ In post-tensioned prestressed concrete members, the prestress forces are directly applied to the end of the members with relatively very small mechanical anchorages and large forces.

➢ The PT concentrated force induces a complex 3D stress pattern near the anchorage zone.

➢ For practical purposes the anchorage zone design is simplified from 3D to 2D.

➢ A single tendon jacking force could vary from 100 tons to about 1000 tons.

➢ Single PT anchorage has been studied both theoretically and experimentally. However, in reality multiple anchorages with different configurations and cross sections exist.

➢ Improperly design and detailing of anchorage zone can cause longitudinal and vertical cracks around anchorage zone.
Examples where the PT tendons are anchored at the end of girders
Example of PT tendons are anchored at intermediate span and blisters
Introduction

Definitions

Anchorage Zone / End Zone / Saint-Venant Region: The volume of concrete through which the concentrated PT force is transferred to a section more or less has linear stress distribution.

Local Zone: Rectangular prism of concrete surrounding and immediately ahead of bearing plate.

General Zone: Region within which concentrated force spread out to a more linear stress distribution over the cross section

Lead Length / Transition Length: the length of equivalent / symmetrical prism

Bursting Force: Tension force perpendicular to the concentrated force axis in the equivalent prism

Spalling Force: Tensile stresses along the loaded face of a beam induced by compatibility requirement

Splitting Force: Tension force between two or more anchorages which could result in splitting cracks

Longitudinal Edge Tension Force: The tension force in the beam edge longitudinal direction due to eccentric load.
Isometric of anchorage zone deformed shape [17]
Introduction

Stress distribution in the disturbed zone

Deformed shape

Tensile stress

Compressive stress

Lead length d
Introduction

Local and General Zone Limit
Introduction

Local and General Zone Limit
Introduction

Local Zone Confinement Reinforcement
Introduction

Responsibilities (LRFD 5.8.4.4)

• The Engineer of Record
 ➢ Overall design
 ➢ General zone design
 ➢ Approval of working drawings, e.g. general zone reinforcement, stressing sequence, tendon layout, anchorage device and its local zone confinement reinforcement
Introduction

Responsibilities (LRFD 5.8.4.4) (cont.)

- The Anchorage Device Supplier (Proprietary / Special Anchorage Device)
 - Supply the Anchorage Device and its local zone confinement reinforcement
 - Meet the efficiency test requirement (96% GUTS) as per LRFD Bridge Construction Spec.
 - Meet the special anchorage device acceptance test as per LRFD Bridge Construction Spec.
Introduction

Anchorage Device acceptance test and efficiency test requirement of AASHTO LRFD Bridge Construction Specifications
Presentation Outline

• Introduction
• Case Study of Anchorage Zone Failure
• Development of PT Anchorages
• Design Methods for General Zone
• The Art of Proper Detailing
• Design Examples
• References
Case Study of Anchorage Zone Failure

Transverse tendon anchorage zone failure due to poor anchorage zone design and detailing

Cracks
Case Study of Anchorage Zone Failure

Spalled concrete as a result of incorrect tie down rebar details in the curved tendon zone. The curved tendon has a very thin concrete cover.
Case Study of Anchorage Zone Failure

Top slab cracks due to lack of longitudinal tie back reinforcement

Top deck cracks

Top blister

Top slab cracks due to lack of longitudinal tie back reinforcement
Case Study of Anchorage Zone Failure

Top Blister and web cracks (1)
Case Study of Anchorage Zone Failure

Top blister and web cracks (2)
Notes: PT blister impacted web and resulted in web cracking
Case Study of Anchorage Zone Failure

Spalled concrete as a result of incorrect tie-down rebar details in the curve tendon zone of a blister with a thin concrete cover.
Case Study of Anchorage Failure

PROBLEM

Provide sufficient concrete over the duct to effectively transfer the compression struts C to tie down reinforcement (lower PT duct)

SOLUTION 1

SOLUTION 2

Radial force Q is directly transferred to tie down reinforcement

SECTION A-A
Presentation Outline

• Introduction
• Case Study of Anchorage Zone Failure
• Development of PT Anchorages
• Design Methods for General Zone
• The Art of Proper Detailing
• Design Examples
• References
Development of PT Anchorages

The most common types of high strength prestressing steel use in Post-tensioned Structures

1. Seven wire strands (0.5”, 0.6”, and 0.62” diameter), Grade 270
2. High strength bars, Grade 150
3. Wires (not available in Florida)

FDOT Standard Tendon sizes for strand system (FDOT IDS Index 21800 Series)

- 0.6” Multi-strand system: 4, 7, 12, 15, 19, 27, and 31.
- PT bars diameter: 1”, 1 ¼”, 1 3/8”, 1 ¾”, 2 ½”, 3”.

Notes: 0.62” diameter strands are commonly used in stay cables
Development of PT Anchorages

Overall view of the Freyssinet PT wire tendon from anchorage to anchorage. Freyssinet System was one of the earliest PT systems in the world.
Freyssinet Wire System was one of the earliest proprietary mechanical PT anchorage system (1930)
Development of PT Anchorages

Freyssinet multi-strand system
Development of PT Anchorages

Monowire tendon 4/7 mm.

Monogroup tendon 19/0.6” Dyform.
Development of PT Anchorages
Development of PT Anchorages
Development of PT Anchorages

[Image showing anchorages with labels for Grout Tube and Duct Tape]
Development of PT Anchorages

Grout Tube/Vent
Development of PT Anchorages
Development of PT Anchorages
Development of PT Anchorages

VSL Composite Anchorage System
Development of PT Anchorages

VSL PT anchorage
for flexible filler
Development of PT Anchorages

SDI PT Anchorage Systems
Development of PT Anchorages

Tensa PT Anchorage System
Development of PT Anchorages

Concrete Strength Limit for Post-Tensioned Structures

Section 5.4.2.1: Limit of f’c for structural concrete from 4,000 psi to 10,000 psi.

FDOT Structures Design Guidelines (January 2018)
SDG Section 1.4.3: Limit of f’c for Prestressed Concrete from 5,000 psi (Class III) to 10,000 psi.
Development of PT Anchorages

Concrete Strength Limit for Post-Tensioned Structures (cont.)

Notes:
- Concrete strength is directly related to the size of bearing plates and local zone reinforcement.
- Typically tendons are stressed in a few days after concreting. 5000 psi concrete can reach about 4000 psi (0.8 f'c) in one or two days. Therefore, 5000 psi is the absolute minimum concrete strength recommended.
- Most proprietary PT anchorage systems are designed for a minimum of 3500 psi to 4000 psi concrete strength.
Presentation Outline

• Introduction
• Case Study of Anchorage Zone Failure
• Development of PT Anchorages
• Design Methods for General Zone
• The Art of Proper Detailing
• Design Examples
• References
Design Methods for General Zone

- Elastic Stress Analysis (Mörsch, Guyon, Magnel, Leonhardt)
 - Classical / Photo-elastic
- Strut and Tie Models (equilibrium based plasticity models)
- Approximate Method
 - Deep Beam Analogy (Proposed by Gustave Magnel of Belgium)
- Combined Methods

Notes: Finite Element Method is not commonly used for General Zone design (use as supplementary analysis for complex general zone)
Design Methods for General Zone

Anchorage Zone Design Procedures

▪ Understanding the flow of stress distributions for different anchorage configurations.
▪ Design is based on the maximum jacking force (0.8 U.T.S)
▪ Assume stiff bearing plate (square, rectangular, and circular shapes)
▪ Determine the bursting, spalling, splitting and longitudinal edge tension forces in both vertical and transverse directions (the concrete tensile strength shall be ignored).
Design Methods for General Zone

Anchorage Zone Design Procedures (cont.)

▪ Compute / estimate the tension forces based on simplified / practical methods.

▪ Provide ample (robust) of reinforcement confinement and tension ties at the correct location to assure structural safety and serviceability. These reinforcement shall be provided in addition to the shear and torsion reinforcement required for the girder / beam design.

▪ Good detailing practices are the key to successful and safe anchorage zone design.

Reinforcement for bursting forces shall be designed based on maximum jacking force at time of stressing with allowable steel stress:

\[f_s = 0.6 \, f_y \quad (f_y \leq 60 \text{ ksi}) \]
Design Methods for General Zone

Bursting Reinforcement Calculations (cont.)

2. Load and Resistance Factor (LRFD)

LRFD 3.4.3.2

The design force for post-tensioning anchorage zones shall be taken as 1.2 times the maximum jacking force.

LRFD 5.5.4.2

Resistance Factors Φ for compression in anchorage zones:
Normal weight / lightweight concrete: 0.80

Resistance Factor Φ for tension in steel anchorage zones: 1.0 (?)

(Note: in the past $\Phi = 0.8$ to 0.85 has been used)
Design Methods for General Zone

Isobars: points of equal transverse stresses

Isobars with the Value \(\frac{\sigma_y}{\sigma_o} \), where \(\sigma_o = \frac{P}{b \cdot d} \)

Where:
- \(a \) = Bearing plate width
- \(d \) = Member depth
- \(b \) = Member width
- \(P \) = Concentrated Force

Lessons Learned: The smaller \(a/d \) ratios, the larger the bursting force
Design Methods for General Zone

Since each proprietary system has its own anchorage dimensions, shapes and the selected system is unknown during the design phase, the best strategy:

- Select the smallest size of anchorage from approved PT systems for computing bursting forces.

- Select the largest size anchorage from approved PT systems for setting up anchorages layout and detailing.

Notes: The bearing plates must meet the edge distance and anchorages center to center for a particular system
Mörsch’s Theory (1924)

Mörsch theory for concentric load follows parabolic stress trajectories distributed uniformly at distance d from the face. Mörsch theory was the earliest application of strut and tie model in computing the bursting force T_b

$$T_b = \frac{P}{4d} (d-a) = 0.25 P \left(1 - \frac{a}{d}\right)$$
The above diagrams were produced by Iyengar [16]
Design Methods for General Zone

Single Concentric Force

Bursting Force T_b

- Fritz Leonhardt: $T_b = 0.30 \, P \, (1 - a/d)$ for $a/d < 0.2$
- E. Mörsch: $T_b = 0.25 \, P \, (1 - a/d)$ for $a/d > 0.2$

Principal Tension and Compression Stresses

Transverse Compressive and Tensile Stresses distribution
Bursting Force: $T_b = 0.30 \ P \ (1 - a/d)$

Notes: small eccentric force when the center line of PT force falls inside the kern zone of the beam section
For large single eccentric force, use strut and tie or deep beam theory
Design Method for General Zone

Guyon’s Theory for Multiple Anchorages

(1) Linear Distribution of Prestressing Force

Multiple Forces Case 1
If the PT force is applied by anchorages which are linearly distributed along the end of the member in a manner corresponding to the distribution of stress at the beam section (end of general zone) each anchorage is considered to consist of prism which is in equilibrium under the action of the PT force at one end and linear stress in the other end as shown below.
Design Method for General Zone

Guyon’s Theory for Multiple Anchorages

(1) Linear Distribution of Prestressing Force (Multiple Forces Case 1)

Notes: The Bursting Force T_b equation for each symmetrical prism is similar to concentric single force.
Design Method for General Zone

Guyon’s Theory for Multiple Anchorages

(1) Linear Distribution of Prestressing Force

Multiple Forces Case 2
If the PT forces are not the same line of action with the equal stress area resultant, each prism is formed based on the horizontal line separated each stresses zone.
Design Method for General Zone

Guyon’s Theory for Multiple Anchorages

(1) Linear Distribution of Prestressing Force (Multiple Forces Case 2)

Notes: The Bursting Force T_b equation for each symmetrical prism is similar to concentric single force
Guyon’s Theory for Multiple Anchorages

(2) Non-Linear Distribution of Prestressing Force (successive resultant)

If the anchorages are arranged in groups, it is assumed that the bursting stresses reach their largest values first on the line of action each separate group, then on the line of action of the resultant for each group, and finally the line of action for the total resultant. This method called the Guyon’s “Law of Successive Resultants”.

Design Method for General Zone
Design Method for General Zone

Deep Beam Analogy (1 of 2) [8]

\[
M_{\text{max}} = \frac{P}{2} \left(\frac{d}{4} - \frac{a}{4} \right)
\]

\[
T = \frac{M_{\text{max}}}{d/2} = \frac{P}{4} \left(1 - \frac{a}{d} \right)
\]
Design Method for General Zone

Deep Beam Analogy (2 of 2) [8]
Design Method for General Zone

Strut and Tie Model (1 of 2) [8]

(a) Centrally located bearing plate

(b) Bearing plates at top and bottom
Design Method for General Zone

Strut and Tie Models (1 of 2)

(c) Bearing plate at top

(d) Three symmetrically located bearings
Design Method for General Zone
Spalling Reinforcement

- AASHTO LRFD Spec. 5.9.5.6.5 b
 The minimum spalling force for design is 2% of the total post-tensioning force.

- Y. Guyon in 1953 proposed that the minimum spalling force for design is 4% of the total post-tensioning force or the equation below.

- For multiple anchorages it is sufficient to considered the total PT force from a single largest anchorage force.
Design Method for General Zone Spalling Reinforcement (cont.)

1. The spalling reinforcement shall be provided in the form of reinforcing bar mesh and place as close as possible to the concrete surface.

2. The spalling reinforcement shall be provided in both directions.

Spalling Force: $T_s = \left[0.04 + 0.20 \left| \frac{a_1 - a_2}{a_1 + a_2} \right|^3 \right] P$
Tension T is generated as a result of the stressing of tendon T_1.
Anchorage Zone Design Methods

AASHTO LRFD Section 5.8.4.5.3 (8th Edition, Sept. 2017)

\[T_{\text{burst}} = 0.25 \sum P_u \left(1 - \frac{a}{h} \right) + 0.5 \left| \sum P_u \sin \alpha \right| \]

\[\ldots \ldots \quad (5.8.4.5.3-1) \]
Anchorage Zone Design Methods

Limitations of LRFD Equation 5.8.4.5.3-1

Per LRFD 5.8.4.5.1 The above equation is valid provided:

- The member is a rectangular cross section and the length wise is larger than the transverse section dimension
- The member has no discontinuity within or ahead of the anchorage zone
- The minimum edge distance ≥ 1.5 a
- Only one anchorage device or one group of closely spaced anchorage devices
- The inclination angle α is between -5 degrees to +20 degrees
Presentation Outlines

• Introduction
• Case Study of Anchorage Zone Failure
• Development of PT Anchorages
• Design Methods for General Zone
• The Art of Proper Detailing
• Design Examples
• References
The Art of Proper Detailing

Recommendations for Good Detailing Practice

- Bursting reinforcement consists of closed stirrups for the whole depth of end block.
- Bursting reinforcement shall be uniformly distributed in the tension disturbed zone.
- It is better to use more smaller size reinforcing bars distributed in the bursting zone than large size of bars at a specific concentrated point.
- For large bursting forces, it may be necessary to provided four legs stirrups.
Lap spliced stirrup legs are not recommended.

Transverse bursting reinforcement is provided through smaller closed stirrups cage inside the main bursting steel.

Spalling reinforcement consists of orthogonal hair pin reinforcement grid placed as close as possible to the tension face (in the 0.15 d zone from the loaded face)
The Art of Proper Detailing

Strut and Tie Model for a blister

- Ties rebar for curved tendon
- Minimum reinforcement only
- Longitudinal tie back reinforcement
- Spiral / ties confinement for local zone & bursting force

6” max. spacing
4” max. spacing

0.5P
0.5P

C3
C1
C2
T1
T2

P
The Art of Proper Detailing

Spall reinforcement

Front View

Elevation View

Hair pin reinforcement
The Art of Proper Detailing

Multiple anchorages minimum spacing and edge distance

Partial Front View of Multiple Anchorages

WHERE:
- $E =$ Minimum edge distance
- $S =$ Minimum anchorages spacing from center to center
- $\alpha =$ Bearing Plate dimension

LRFD 5.8.4.5.1
- Dimension $E \geq 1.5 \alpha$
- If $S \leq 1.5 \alpha$, the anchorage devices can be considered as closely spaced.
The Art of Proper Detailing

Spall and supplementary reinforcement
The Art of Proper Detailing
Presentation Outline

• Introduction
• Case Study of Anchorage Zone Failure
• Development of PT Anchorages
• Design Methods for General Zone
• The Art of Proper Detailing
• Design Examples
• References
Example 1: Concentric Single Anchorage

Given:
- Rectangular section post-tensioned girder with 6'-6" depth by 2'-6" wide
- Concrete strength: $f_c = 6000$ psi
- PT tendon: 19-0.6" strands Grade 270
- Reinforcing Steel: Grade 60

Required: General zone reinforcement and detailing

BEARING PLATE
Ø 1'-2½" (SDI 19.6-PC)
SOLUTION

SELECT BEARING PLATE SIZE (SDI 19.6 - PC)

BEARING PLATE: $\phi 1' - 2\frac{1}{2}'' (14.5'')$

COMPUTE EQUIVALENT SQUARE BEARING PLATE DIMENSIONS (a x a)

$$a = \sqrt{\frac{\pi R^2}{\theta}}$$

$$= \sqrt{\frac{\pi (14.5/2)^2}{\pi}}$$

$$= 12.85''$$

$$= 1.07'$$

CHECK MINIMUM EDGE DISTANCE OF THE BEARING PLATE.

ASSUME EDGE DISTANCE OF THIS BEARING PLATE IS 10''. (TYPICALLY PROVIDED BY PT SYSTEM MANUFACTURE)

GIRDER WIDTH = 2' - 6'' > 2 x 10'' = 20''

O.K.
COMPUTE VERTICAL BURSTING FORCE (TBY)

\[d = 6'-6'' \]
\[\alpha = 14.5'' \]

\[\text{SYMMETRICAL PRISM} \]

\[\text{CONVENTIONAL METHOD} \]

Jacking force at 80% U.T.S.
\[P_j = 0.8 \times 19 \times 58.6 = 891 \text{ Kips} \]

\[TBY = 0.3 \times P_j \left(1 - \frac{\alpha}{180}\right) \]
\[= 0.3 \times (891) \left(1 - \frac{12.85}{180}\right) \]
\[= 223.26 \text{ Kips} \]

Bursting steel area:
\[A_{b,y} = \frac{TBY}{0.6 \times f_{y}} = \frac{223.26}{0.6 \times 60} = 6.2 \text{ in}^2 \]
\[(20 \# 5/0') \]
AASHTO LRFD METHOD

\[T_{by} = 0.25 \ P_j \left(1 - \frac{a}{d}\right) - \cdots \left(5.8.4.5.3-1\right) \]

\[= 0.25 \ (891) \left(1 - \frac{12.85}{78}\right) \]

\[= 186 \ \text{kips} \]

Bursting steel area required:

\[A_{sb y} = \frac{1.2 \ T_{by}}{f_{sy}} \]

WHERE:

- PT anchorage zone width
 \[\text{factor} = 1.2 \]
 \[(5.4.3.2) \]

- \(T_{by} \) = Bursting force in \(y \) direction

- \(\phi = 1.0 \) (Resistance factor for steel in anchorage zone per 5.5.4.2)

- \(f_{sy} = 60 \ \text{ksi} \)

\[A_{sb y} = \frac{1.2 \ (186)}{1.0 (60)} = \frac{3.72}{(60 \% \ of \ conventional)} \]
Use $\phi = 0.85$ (original ϕ proposed by researchers at UT)

\[\text{Asby} = \frac{1.2 (186)}{0.85 (60)} = 4.376 \text{ in}^2 \]

(70% of conventional)

Use conventional bursting force equation at $\phi = 0.85$

\[\text{Asby} = \frac{1.2 (223.26)}{0.85 (60)} = 5.25 \text{ in}^2 \]

(85% of conventional)

This approach will be used in this design example forward.

\[\text{Asby} = 5.25 \text{ in}^2 \]

(= 18 # 5.0 or 12 # 6)
HORIZONTAL BURSTING FORCE (T_{BZ})

\[d = 2'6'' \]

\[a = 12 \text{ in} \]

\[b = 25'' \]

\[x = 21.6'' \]

\[T_{BZ} = 0.3 \cdot P_j \cdot \left(1 - \frac{a}{d}\right) \]

\[= 0.3 \cdot (891) \cdot \left(1 - \frac{12.85}{30}\right) \]

\[= 152.8 \text{ kips} \]

Compute transverse/horizontal bursting reinforcement.

\[A_{SBZ} = \frac{1.2 \cdot (152.8)}{0.85 \cdot (60)} \]

\[= 3.59 \text{ in}^2 \quad (12 \# 5 \text{ on} \quad 8 \# 6) \]
SPALLING REINFORCEMENT

According to AASHTO LRFD Section 5.9.5.6.5.1:

Spalling force $T_s = 2\% P_j$ vs 4\% per Guyon

Use $T_s = 2\% P_j$

$= 0.02 \times (891) = 17.82$ kips.

$A_s = \frac{1.2 T_s}{0.85 (60)}$

$= \frac{17.82}{0.85 \times 60} = 0.419 \text{ in}^2 \quad (c = 4 \# 4)$
EXAMPLE 2: SINGLE ANCHORAGE WITH SMALL ECCENTRICITY

GIVEN:

- Rectangular section post-tensioned girder with 6'-6" depth by 2'-6" wide
- Concrete strength $f'c = 6000$ psi.
- PT Tendon: 19 - 0.6" strands grade 270
- Reinforcing steel: Grade 60.
- The anchorage C.G.S. is 2'-2" measured from the bottom of the girder

REQUIRED: General Zone reinforcement and detail

Bearing plate $\phi 1'-2\frac{1}{2}"$ (SDI 19.6 - PC)
Compute Vertical Bursting Force

\[C_{TBY} \]

Symmetrical Prism

\[d = 2 (2\text{"} - 2\text{"}) = 4\text{"} - 4\text{"} = 52\text{"} \]

\[a = 12.85\text{"} \text{ (Example 1)} \]

Jacking force \(P_j = 891 \text{ kips (Example 1)} \)

\[T_{BY} = 0.3 P_j \left(1 - \frac{a}{d}\right) \]

\[= 0.3 (891) \left(1 - \frac{12.85}{52}\right) \]

\[= 201 \text{ kips} \]

Bursting Steel area required:

\[A_{BY} = \frac{1.2 (T_{BY})}{\phi f'c} = \frac{1.2 (201)}{0.85 (60)} \]

\[= 11.73 \text{ in}^2 \text{ (16 #5 on = 12 #6)} \]
Design Examples

Horizontal Bursting Force (T_{b,z})

Similar to Example 1.

\[T_{b,z} = 152.8 \text{ kips} \]

\[A_{b,z} = 3.59 \text{ in}^2 \]

Spalling Reinforcement

Similar to Example 1.
Presentation Outline

- Introduction
- Case Study of Anchorage Zone Failure
- Development of PT Anchorages
- Design Methods for General Zone
- The Art of Proper Detailing
- Design Examples
- References
References

1. “End Block Design in Post-Tensioned Concrete”, VSL International Ltd., Bern, Switzerland, November 1975
3. “Post-Tensioning System”, VSL International Ltd., Bern, Switzerland, 1992
10. ACI SP-120, “External Prestressing in Bridges”
References (Cont’)

Closing

Thank you for your attention!
Any questions?