

PT System and Approval Process

Jacqueline Petrozzino-Roche and Scott Arnold

Presentation Overview

- Post-Tensioning in Florida
 - Key projects
 - Corrosion
- A need for Improvement
 - Reevaluation of the Department's Policy
 - Flexible filler
- FDOT's Policy on Post-Tensioning
 - Structures Manual
 - Standard Plans
 - Specifications
- Post-Tensioning System Reviews
 - Requirements
 - Outcomes

FDOT's History with Post-Tensioning

- 1954 Sunshine Skyway Approaches
 - PT bars in the beams' bottom flange
- 1979 Chipola Nursery Road Bridge
 - First draped tendons in girder web
- 1979- Long Key Bridge
 - First span-by-span segmental bridge
- 1984 –Ramp I over I-75
 - First balanced cantilever bridge in Florida
- Benefits of using Post-Tensioning:
 - Longer spans
 - Structures with greater curvature
 - More efficient structures

Chipola Nursery Road Bridge over I-10

Ramp I over I-75

Corrosion of Post-Tensioning

- Factors Contributing to Corrosion:
 - Insufficient concrete cover
 - Dry joints between segments
 - Insufficient material for the grout and ducts
- New Criteria for Post-Tensioned Bridges:
 - Improved post-tensioning hardware
 - Pre-bagged thixotropic grouts
 - Enhanced training for installers and inspectors

Niles Channel Anchorage

Sunshine Skyway Bridge Piers

Recent Issues with Grout Filler

- Inadequate quality control
- Uncontrolled pump pressures
- Improper or prolonged storage of prepackaged grout
- Excessive water added to mix
- Variable bag weights
- Insufficient mix time
- Grout sensitivity to environmental conditions
- Contamination with chlorides

Presentation Overview

- Post-Tensioning in Florida
 - Key projects
 - Corrosion
- A need for Improvement
 - Reevaluation of the Department's Policy
 - Flexible filler
- FDOT's Policy on Post-Tensioning
 - Structures Manual
 - Standard Plans
 - Specifications
- Post-Tensioning System Reviews
 - Requirements
 - Outcomes

New Policy

- Reevaluation of Policy
 - Tendon inspection
 - Experimentation- Structures Research Center
 - Post-tensioning advancements
 - Nuclear Industry
 - Bridges in Europe
- Outcomes- New Policies and Criteria
 - Implemented in 2016
 - Flexible filler
 - Post-tensioning system testing

Soft- Chalky Grout (2001)

Soft- Wet Grout (2011)

Moving Forward- Flexible Filler

Microcrystalline Wax

- Stable and non-separating
- Nonflammable
- No environmental concerns or precautions
- Completely prepackaged
- Corrosion Resistant
- Allows the Tendon to be Fully Replaceable
 - Non-rigid: Material viscosity increases with temperature

Presentation Overview

- Post-Tensioning in Florida
 - Key projects
 - Corrosion
- A need for Improvement
 - Reevaluation of the Department's Policy
 - Flexible filler
- FDOT's Policy on Post-Tensioning
 - Structures Manual
 - Standard Plans
 - Specifications
- Post-Tensioning System Reviews
 - Requirements
 - Outcomes

Policy Documents

- Structures Manual
 - www.fdot.gov/structures/
- Standard Plans
 - www.fdot.gov/structures/
- The Standard Specifications for Road and Bridge Construction
 - www.fdot.gov/programmanagement/

Structures Manual

- Modifies the AASHTO LRFD Bridge Design Specifications to meet Florida's requirements
- Provides design and detailing criteria
- 4-Volume Manual
 - Volume 1- Structures Design Guidelines (SDG)
 - Volume 2- Structures Detailing Manual (SDM)

Structures Manual-SDG 1.11.5 Tendon Design Bonded Tendons with Grout Filler:

- Segmental Box Girders
 - Top slab transverse tendons
 - Top slab cantilever longitudinal tendons
- Slab Type Superstructures
 - Tendons that are draped 2'-0" or less

Grouted Top Slab Cantilever Longitudinal Tendons

Structures Manual-SDG 1.11.5 Tendon Design

Bonded Tendons with Grout or Unbonded Tendons with Flexible Filler:

- Straight strand or parallel wire tendons other than continuity tendons in U-beams and girders.
- Bar tendons- horizontal or vertical

Structures Manual-SDG 1.11.5 Tendon Design

Unbonded Tendons with Flexible Filler:

Segmental Box Girders

- External tendons
- Continuity tendons

Structures Manual – SDG 1.11.5 Tendon Design

- Unbonded Tendons with Flexible Filler:
- Spliced I-Girders

Structures Manual

• Structures Design Guidelines Table 1.11.1-1: Minimum Clearance Requirements at Anchorages for Replaceable Strand and Wire Tendons

Stressing End Anchorage

Non-Stressing End Anchorage

Structures Manual-SDG 1.11.5 Tendon Design

- Unbonded with Flexible Filler:
- All substructure strand tendons

Images from: New Directions for Florida Post-Tensioned Bridges

Standard Plans

- Uniform Standards
- 462 Series- Post Tensioning
 - 462-001: Post-Tensioning Vertical Profiles
 - 462-002: Post- Tensioning Anchorage Protection
 - 462-003: Post- Tensioning Anchorage and Tendon Filling Details
 - Standard Plans Instructions

Standard Plans 462-001: Post-Tensioning Vertical Profiles

Post-Tensioning Tendon Data Table

POST-TENSIONING STRAND TENDON DATA TABLE								Table Date 07-01-16						
TENDON DESIGNATION	NO. REQUIRED	TENDON SIZE	LENGTH	AHEAD-STATION STRESSING	STRESSING	AHEAD-STATION END		STRESSING END 1	ELONGATION @	I 7	PROFILE 2	FILLER MATERIAL	ANCHO PROTECTI	
			(Ft-in)	FORCE PER TENDON (kips)	FORCE PER TENDON (kips)	AFTER ANCHOR SET (kips)	AFTER ANCHOR SET (kips)		AHEAD-STATION END (in)	BACK-STATION END (in)			AHEAD STA.	BACK STA.
1	6	12-0.6	650'-0%"	562.5	562.5	454.9	468.9	Alt. (back/ahead)	10.9	32.2	F1	FLEXIBLE	1	1
2	6	12-0.6	650'-1¾"	562.5	562.5	456.3	456.3	Alt. (back/ahead)	10.8	31.6	F1	FLEXIBLE	1	1
3	6	12-0.6	650'-3%"	562.5	562.5	458.4	459.8	Alt. (back/ahead)	10.6	31.0	F1	FLEXIBLE	1	1
4	6	12-0.6	650'-61/4"	562.5	562.5	465.4	465.4	Alt. (back/ahead)	10.6	30.3	F1	FLEXIBLE	1	1

Standard Plans 462-002: Post-Tensioning Anchorage Protection

Structures Design Guidelines 1.11.2- Corrosion Protection

- Four levels of corrosion protection are required at the anchorages
 - Filler in the cap
 - Permanent anchorage cap
 - Concrete structure for interior surfaces or pour-back for exterior surfaces
 - Seal coat

Standard Plans 462-002: Post-Tensioning Anchorage Protection

- Transverse Tendons:
 - Ahead Station → Left Anchorage
 - Back Station → Right Anchorage
- Vertical Tendons
 - Ahead Station → Top of Tendon
 - Back Station → Bottom of Tendon

	POST-TENSIONING STRAND TENDON DATA TABLE									able Date	able Date 07-01-16			
TENDON DESIGNATION	NO. REQUIRED	TENDON SIZE	LENGTH	AHEAD-STATION STRESSING	STRESSING	AHEAD-STATION END		STRESSING END ¹		THEORETICAL ELONGATION @	PROFILE 2	FILLER MATERIAL	ANCHO PROTECTI	
			(Ft-in)	FORCE PER TENDON (kips)	FORCE PER TENDON (kips)	AFTER ANCHOR SET (kips)	AFTER ANCHOR SET (kips)		AHEAD-STATION END (in)	BACK-STATION END (in)			AHEAD STA.	BACK STA.
1	6	12-0.6	650'-0%"	562.5	562.5	454.9	468.9	Alt. (back/ahead)	10.9	32.2	F1	FLEXIBLE	1	1
2	6	12-0.6	650′-1¾"	562.5	562.5	456.3	456.3	Alt. (back/ahead)	10.8	31.6	F1	FLEXIBLE	1	1
3	6	12-0.6	650′-3%"	562.5	562.5	458.4	459.8	Alt. (back/ahead)	10.6	31.0	F 1	FLEXIBLE	1	1
4	6	12-0.6	650'-6¼"	562.5	562.5	465.4	465.4	Alt. (back/ahead)	10.6	30.3	F1	FLEXIBLE	1	1

Standard Plans 462-003: Post-Tensioning Anchorage and Tendon Filling Details

Tendon Mockups

- Successful demonstration of the Contractor's means and methods
 - Duct dissection
 - Inspection at all ports
- Mockups components to be identical to production injection components with the exception of:
 - Segmental duct couplers
 - Corrugated plastic duct
 - Steel pipe

Standard Plans Instructions for the 462 Series

- Mockup Profiles
- Reduce the number of mockups by grouping tendons with similar geometry

Actual Tendon Profile (See Index 462-001)	Representative Tendon Profile
F1, F2 and F3	А
F4, F6 and F10	В
F5, F7 and F11	С
F8 and F9	E
F12, F13 and F14	D
G1	А
G3	В
G4	С
G5	D
G6	E

The Standard Specifications for Road and Bridge Construction

- Organized into Three Divisions
 - Division I: General Requirements and Covenants
 - Division II: Construction Details
 - Division III: Materials
- Sections Pertaining to Post-Tensioning
 - 462: Post-Tensioning
 - 938: Duct Filler for Post-Tensioned Structures
 - 960: Post-Tensioned Components

462- Post-Tensioning

• 462-1: Description

• 462-2: Materials

• 462-3: Alternate PT System Designs

462-4: Qualifications

• 462-5: Submittals

• 462-6: Transport, Handling and Storage

• 462-7: Construction

462-8: Acceptance and Testing

• 462-9: Method of Measurement

• 462-10: Basis of Payment

462 Post-Tensioning

- 462-1 Description
 - Furnish all post-tensioning system components from a single supplier
 - System must be approved and meet the requirements of Section 960
 - Posted to the Department's Approved Post-Tensioning Systems Webpage
- 462-2 Materials
 - Grout and flexible filler must be approved and meet the requirements of Section 938
 - Posted to the Department's Approved Products List (APL)
 - Do not combine different grout or flexible filler products

462 Post-Tensioning

- 462-4 Qualifications: Refer to Section 105
 - Minimum requirements for the foreman, technicians and Inspector
- 462-6 Transportation, Handling and Storage
 - Storage in the open must be on a raised and covered platform
 - Grout filler: 1 week
 - Flexible filler: Up to the manufacturer's expiration date
 - Product Use:
 - Grout filler: 6 months from the production date
 - Flexible filler: Up to the manufacturer's expiration date

462 Post-Tensioning

- 462-7 Construction:
 - Time limit between Posttensioning steel installation and filler injection:
 - PT bars in the superstructure and all strand: 14-days
 - PT bars in the substructure: 21-days
 - Inject according to the approved injection plan
 - Conduct all injection operations in the presence of the Engineer.

462-7 Construction

Grout

- Injection Velocity: Ducts must be filled and vented in not more than 30 minutes without interruption
 - Typically 15-50ft./min.
- Pressure:
 - 10-50 psi at the inlet
 - 145 psi maximum anywhere in the system
 - 75 psi maximum for flat ducts
- Temperature: 90°F maximum

Flexible Filler

- Injection Velocity: 40-70 ft./min.
- Pressure:
 - 75 psi maximum at the inlet
 - 145 psi maximum at the pump
- Temperature: 212°F-240°F

462-7 Construction

462-7 Construction

- <u>Vertical</u> or predominately vertical profiles <u>may</u> utilize vacuum assisted injection.
- Horizontal profiles must utilize vacuum assisted injection.

462-8 Acceptance and Testing

Post-Filler Injection Operations

Grouted Tendons:

- Allow grout to cure for a minimum of 24 hours
- Complete inspection within 1 hour of opening ports
- Drill into ports at all high points and anchorage ports
- Inspect using a borescope
- Fill all voids detected within 4 days from grouting
- Fill all voids due to inspection within 4 hours

Flexible Filler Tendons:

- Allow wax to cool for a minimum of 24 hours
- Complete inspection within 1 hour of opening ports
- Visually inspect all high and low points and ports at anchorages, remove anchorage caps
- Sound external ducts with a rubber mallet
- Repair all voids deeper than ½" or if strands are exposed and uncoated
- Fill all voids within 4 days from filler injection
- Fill all due to inspection within 4 hours

938 Duct Filler for Post-Tensioned Structures

- 938-1 Description
- 938-2 Approved Product List
 - Submit the following to Program Management for Inclusion on the APL:
 - Product Evaluation Application including test reports, material certifications, written certification from the manufacturer
 - Any changes to the material or material source requires new testing and certification
- 938-3 General Requirements

938 Duct Filler for Post-Tensioned Structures

- 938-4 Grout
 - Thixotropic properties
 - Prepackaged in moisture proof containers
- 938-5 Flexible Filler- Microcrystalline Wax
 - Petroleum based microcrystalline

Presentation Overview

- Post-Tensioning in Florida
 - Key projects
 - Corrosion
- A need for Improvement
 - Reevaluation of the Department's Policy
 - Flexible filler
- FDOT's Policy on Post-Tensioning
 - Structures Manual
 - Standard Plans
 - Specifications
- Post-Tensioning System Reviews
 - Requirements
 - Outcomes

- 960-1 Description
- 960-2 Component Standards
 - Material properties for system components
- 960-3 System Pre-Approval Requirements
 - Pressure tests for components and assemblies
 - Fully detailed drawings

The following components are identical for systems using grout or flexible filler:

- Wedge
 - Grips the strand
- Wedge Plate
 - Seats the wedge
- Anchor cap
 - Contains the filler around the anchorage

Wedge Plate

Wedge

The following components are identical for systems using grout or flexible filler:

- Anchorage
 - Transfers the prestressing force to the concrete
- Trumpet
 - Used to deviate the strand from the anchor to duct

- Conduit
 - Grouted: Polypropylene corrugated duct
 - <u>Flexible Filler</u>: Smooth high density polyethylene pipe
- Connections
 - Grouted: Heat welding, duct couplers with gaskets or heat shrink
 - <u>Flexible Filler</u>: Heat welding, Electrofusion couplers

Corrugated Duct

HDPE Pipe with Electrofusion Coupler

- Injection Hoses and Ball Valves
 - Grouted: Plastic components
 - Flexible Filler: Metallic components
 - Compatible with high heat and pressure
- Heat Shrink
 - Grouted: CANUSA PLA
 - Flexible Filler: CANUSA KLNN
 - Higher pipeline temperature
 - Heat shrink may only be used for connections encased in concrete

960 Post-Tensioning

Required Testing- Conducted or witnessed by an independent lab

- Anchorage
 - AASHTO LRFD Bridge Construction Specifications
 - Anchorage shall develop 96% of PT steel AUTS
 - AASHTO LRFD Bridge Construction Specifications Load Transfer Test
 - Prestressing force transferred to the concrete with acceptable crack widths
 - European Assessment Document 16004-00-0301 Fatigue Test
 - 2-million cycle load test
 - Ensures that the strands will not break as they deviate from the wedge to the duct.

960 Post-Tensioning

Required Testing- Conducted or witnessed by an independent lab

- Materials
 - Physical properties defined by ASTMs for:
 - Polypropylene
 - Polyethylene
 - Nylon
 - Rubber
 - Steel

- Duct Testing
 - fib Bulletin 75: Polymer-duct systems for internal bonded post-tensioning
 - The Fédération internationale du béton
 → International Federation for Structural Concrete
 - Annex A: Component assessment procedures, test to Protection Level 2

- System Testing
 - fib Bulletin 75: Polymer-duct systems for internal bonded post-tensioning
 - Annex B: System assessment procedures
 - Filler Containment Assembly Pressure Test
 - External PT System Pressure Test
 - Vacuum Test for Internal and External PT Systems with Flexible Filler

Summary

- Corrosion on tendons using grout filler have lead to major changes in the FDOT's policy on post-tensioning. These changes were implemented in 2016.
- Outcomes of the policy change include the use of flexible filler, increased requirements for installers and inspectors in the field and additional testing on post-tensioning system materials, components and assemblies.
- The Department's policy on post-tensioning is provided in the Structures Manual, Standard Plans and Standard Specifications for Road and Bridge Construction.
- Many of the components between systems using grout and flexible filler are identical with the exception of ducts, injection pipes, valves, couplers and heat shrink.

Contact Information

Scott Arnold, P.E.

850-414-4273

Scott.Arnold@dot.state.fl.us

Jacqueline Petrozzino-Roche, P.E.

850-414-4290

Jacqueline.Petrozzino@dot.state.fl.us

