

Advancements in Bridge Hydraulic and Scour Analyses with 2D Hydraulic Modeling

U.S. Department of Transportation

Federal Highway Administration Scott Hogan (FHWA) and Carl Spirio (FDOT)

FHWA Every Day Counts Program (EDC) CHANGE

Collaborative Hydraulics: Advancing to the Next **Generation of** Engineering

FHWA Advancements in Hydraulic Modeling

Overview

- FHWA hydraulic modeling history
- 1D vs. 2D hydraulic modeling
- 2D hydraulic modeling applications
- 2D modeling resources
- What's New?
- What's Next?

Why is FHWA concerned about bridge hydraulics?

Image Source: Openclipart

FDOT

TRANSPORTATION

FHWA Hydraulic Modeling History

- **1957** First hydraulic bridge design
- **1960** FHWA introduced HDS-1 basic analysis approach
- **1966** HEC-2 Start of 1D modeling (step backwater)
- **1988** First 2D modeling by FHWA/USGS with FESWMS
- 1996 HEC-RAS (1D) was released
- 2012 FHWA recommended 2D modeling for all but the simplest bridge hydraulics (HEC-18 / HDS-7)
- 2013 FHWA partnered with USBR (SRH-2D)
- 2014-16 Hydraulic structures added to SRH-2D
- 2017 EDC-4 CHANGE initiative to promote 2D modeling
- **2019** EDC-5 CHANGE continued development

SRH-2D Hydraulic Model

• USBR Partnership

- Model features and capabilities
 - Steady and unsteady flow
 - Sub- and supercritical flow
 - Multiple boundary conditions
 - Normal/critical depth rating curves
 - Internal boundary conditions

• Hydraulic structures

- Bridge pressure flow with overtopping
- Bridge piers and blocked obstructions
- 1D (HY-8) and 2D culvert hydraulics
- Weirs and Gates
- Other features
 - Depth dependent roughness
 - Sediment Transport

SMS Graphical User Interface

- Aquaveo support and partnership
- Full service package
 - Pre-processing
 - Model Execution
 - Model Review
 - Results Summary
- LiDAR processing features
 - Data filtering and transformation
- 2D Mesh development
- Presentation graphics and visualizations
- Tutorials and User's guide
- Technical Support
- Free community version
- 'Pro' version has additional analysis tools

1D versus 2D Modeling

1D versus 2D Modeling

Hydraulic Variables	One-dimensional (1D) Modeling	Two-dimensional (2D) Modeling		
Flow direction	Assumed by user	Computed		
Flow paths	Assumed by user	Computed		
Channel roughness	Assumed constant between cross sections	Assumed at each element		
Ineffective (blocked) flow areas	Assumed by user	Computed		
Flow contraction and expansion through bridges	Assumed by user	Computed		
Flow velocity	Averaged at each cross section Assumed in one direction	Magnitude and direction Computed at each element		
Flow distribution	Assumed based on conveyance	Computed based on continuity		
Water surface elevation	Assumed constant across cross sections	Computed at each element		

Why use 2D hydraulic modeling?

- Flow paths/flow splits are directly computed
- Multiple openings are more accurately represented
- Continuity is preserved across the channel
- Flow distribution is computed based on continuity and momentum
- Water surface is computed across the channel
- Overtopping and pressure flow are more accurately represented
- More accurate bridge scour assessment

Consequences of 1D Modeling Assumptions

Benefits of 2D Hydraulic Modeling

More accurate representation of flow

Benefits of 2D Hydraulic Modeling

Graphical Visualizations

"The more I learn, the more I realize how much I don't know." - Albert Einstein

2D Hydraulic Modeling Applications

- Multiple hydraulic structures
- Skewed bridges
- Complex floodplain flow
- Multiple flow paths
- Wide floodplains
- Undefined flow paths
- Super-elevation around bends
- Bank protection design
- Channel stabilization design
- Bridge scour evaluation
- Habitat impact assessment

Multiple Structures

Skewed Bridges

Image Sources: Montana DOT / Earthstar Graphics (Aerial Image)

Complex Floodplain Flow

Multiple Flow Paths

Wide Floodplains

Undefined Flow Paths

Image Sources: FHWA / Earthstar Graphics (Aerial Image)

Super-elevation of Flow Around Bends

Improved Bank Protection Design Approaches

Channel Stabilization Design

Bridge Scour Evaluation

Habitat Analysis and Impact Assessment

Fish Passage Design

Urban Drainage Analysis

2D Hydraulic Modeling and Scour References

www.fhwa.dot.gov/engineering/hydraulics (Search FHWA Hydraulics)

- Two-Dimensional Hydraulic Modeling for Highways in the River Environment (FHWA, ETA summer 2019)
- Hydraulic Design of Safe Bridges HDS-7 (FHWA, 2012)
- Evaluating Scour at Bridges HEC-18 (FHWA, 2012)

2D Hydraulic Modeling Resources

www.fhwa.dot.gov/engineering/hydraulics (Search FHWA Hydraulics)

Training

- 2D hydraulic modeling course (NHI#135095)
- Advance online training (NHI#135095A & B)
- YouTube video tutorials (Search FHWA SRH-2D July 2017)
- 2D Hydraulic Modeling User's Forum webinars (contact Scott Hogan)

2D Hydraulic Modeling Resources

www.fhwa.dot.gov/engineering/hydraulics (Search FHWA Hydraulics)

Other Information (contact Scott Hogan):

- Examples of graphical visualization tools
- Sample scope of work for 2D modeling
- Model review checklist and comment form
- 2D Hydraulic Modeling Fact Sheet
- Case studies (example applications)
- College level curriculum for 2D hydraulic modeling

What's New?

- Simulation 'dashboard'
- Concurrent simulations
- Simulation queue
- Summary tables
- Plotting features
- Bridge scour analysis tools

SYMPOSIUM

What's New ?

Improved Bridge Scour Evaluation with 2D Model Results

What's New ?

Bridge Scour Tools in SMS / FHWA Hydraulic Toolbox Interface

User specifies:

- 1) Channel centerline
- 2) Approach section
- 3) Contracted section
- 4) Bank locations
- 5) Pier locations, size and alignment
- 6) Abutment toe locations

Average hydraulic parameters and geometry are exported to the Hydraulic Toolbox

Image Sources: Alaska DOT/ Earthstar Graphics (Aerial Image)

What's New ? 2D Bridge Scour Analysis Tools – Critical Velocity Index with the Data Calculator

Image Sources: Alaska DOT / Earthstar Graphics (Aerial Image)

What's New ? 2D Bridge Scour Analysis Tools – Critical Velocity Index with the Data Calculator

Image Sources: Alaska DOT / Earthstar Graphics (Aerial Image)

What's New ?

Update FHWA Hydraulic Toolbox Scour Calculators

Hydraulic Toolbox - C:\Temp\ScourDemo.hyd - [Hydraulic Toolbox Project]					- 0	×	
<u>File</u> Display Calculators Profiles	Bridge Scour Analy	rsis				_ 8 ×	
🗋 💣 🚽 🕖 🛛 U.S. Customary Units 💌	Scour Location\type:	Long-Term Degradation	-				
FHWA Profile (read-only) 💽 🛛 🕼 🥳	Computation Method	Bridge Scour Analysis			×		
🔗 🐘 🔮 🌮 😽 🗟 🗏 🌮 💆	Parameter Input Parameters	Scour Location\type: Contract	ion Scour	•			
Project Explorer	Slope Equation D90	Computation Method: All Meth	Bridge Scour Analysis			×	l l
⊡ 🔁 Project - Untitled	Shield's Parameter Depth or Hydraulic F	Parameter	Scour Location\type: Abutment S	cour			
Bridge Scour Q10	Average Channel Ve Unit Weight of Wate	Input Parameters Average Depth Upstream of Co	Computation Method: NCHRP	Bridge Scour Analysis			×
Bridge Scour Q100	Unit Weight of Sedir Coarse Bed Material	D50	Parameter				
Bridge Scour Qovertopping	D84	Results of Scour Condition	Input Parameters Abutment Type	Computation Method: HEC-18	• •		
Eridge Scour Q500	Manning's n Value Armor Thickness Fac	Critical velocity above which b	Angle of Embankment to Flow	Darameter		Unita	Natas
	Discharge Per Unit V Current Slope	Live Bed & Clear Water Input P	Width of Flood Plain	Input Parameters	value	onits	lotes
	Distance Upstream o	Temperature of Water	Unit Discharge, Upstream in Active	Pier Shape Bed Condition	Round Nose Clear-Water Scour	▼ ▼	June Height is N/A
	Boundary Shear Stre	Flow in Contracted Section	D50	Depth Upstream of Pier	14.00	ft	
	Critical Bed Material Percent of Bed Mate	Flow Upstream that is Transpor	Upstream Flow Depth	Width of Pier	2.00	ft v	vidth for the zero skew co
	More Results Pendir	Width Upstream that is Transpo	Flow Depth prior to Scour	Length of Pier Angle of Attack	10.00	ft Degrees	
	Equilibrium Slope	Depth Prior to Scour in Contrac	Results will be shown when all the	Results		begrees	
	Ultimate Degradatio	Unit Weight of Sediment		Froude Number Upstream Correction Factor for Pier Nose Shape (K1)	0.28		
		Results of Clear Water Method		Correction Factor of Angle of Attack (K2)	1.00		
		Diameter of the smallest nontra		Pier Length to Pier Width (L/a)	5.00		
		Average Depth in Contracted S		Computed Scour Depth	5.05	ft	
		Results of Live Bed Method		Maximum Scour Depth Check	4.80	ft	
		k1		Scour Depth	4.80	ft	
		Shear Velocity					
		•					
-							
Ready							
							OK Capital
							Cancel

TRANSPORTATION SYMPOSIUM

What's New ?

FHWA Hydraulic Toolbox Scour Summary Tables and Plots

SYMPOSIUM

What's Next?

- 3D bridge profiles
- Multiple profile bridge scour analysis tools
- Bridge scour tutorials
- Bridge scour webinars
- Advanced 2D meshing tools
- 1D model export tools
- Floodplain mapping tools
- Floodway delineation tools

Federal Highway Administration

THANK YOU! Please contact us with any questions

Scott Hogan

Laura Girard

FHWA Resource Center <u>Scott.hogan@dot.gov</u> (720) 575-6026 FHWA Resource Center <u>laura.girard@dot.gov</u> (970) 217-3894

Carl Spirio

Florida Department of Transportation <u>Carlton.Spirio@dot.state.fl.us</u> (850) 414-4351

DISCLAIMER

 The Federal Highway Administration (FHWA) does not endorse any entity and the appearance of our presentation material in this template should not be interpreted as an endorsement or statement exhibiting any preference, support, etc.

