

Center for Accelerating Innovation

Reducing Rural Roadway Departures

Every Day Counts Round 5

The Rural RwD Component of Fatalities

What is a Roadway Departure (RwD)?

FHWA Definition: A crash in which a vehicle crosses an edge line, a center line, or otherwise leaves the traveled way.

Where do rural roadway departures occur?

NACE estimates that 40-60% of fatalities occur on roads under local jurisdiction.

Funding for Local Agencies

70% of HSIP provided to **Local Agencies**

County 30%

State

State 30%

- Several states, like Washington and Minnesota, allocate HSIP funding based on crash frequency
- Other fund sources (state, local, tribal) may also be available
- Development of Local Road Safety Plans helps prioritize these investments
- States can also streamline the process for projects that were in the plans
- Counties have found efficiency in bundling projects across county lines

Focusing on Reducing Rural Roadway Departures (FoRRRwD)

Mission - Reduce the potential for serious injury and fatal roadway departure crashes on **all public rural roads** by increasing the systemic deployment of proven countermeasures.

Priority States based on STIC-Reported Baseline and Goals

Implementation Stage		(adva	Leap nce 2+ s	tages)			Crawl (same stage)		
Institutionalized					1			CA, CO, DE, IA, IL, MT, SD, VT, WV	MI, MN, NC, OH, OR, RI, SC, TN, WY
Assessment		тх		↑	КY		AZ, FL, GA, ID, IN, LA, ME, UT, VA, WA	4	ks, pa, pr 5
Demonstration			1	AK	1	AL, CT, MO, MS, NH, NJ, NY, OK	3		ND, AR 5
Development	МА	1	FLH	1		2			н 5
Not Implementing	1		1						DC, MD, NE, NM, NV, WI, VI

Priority indicted by numbers shown and based on interest in advancing the initiative

Stages determined by self-assessment of STICs

Why <u>do</u> drivers leave the roadway?

Roadway Condition

Vehicle Component Failure

Collision Avoidance Driver Error

Fatal Crash Types in Florida Most Harmful Event

	2012
Motor Vehicle	
In-Transport	815
Rollover/Overturn	379
Tree (Standing Only)	236
Pole/Sign Support	96
Traffic Barrier	60
Fire/Explosion	47
Fell/Jumped from Vehicle	34
Immersion or Partial	28

fatal crash locations

inovation

are

random

fatal crash types are

predictable

Systemic Safety Improvements

Systemic

- Based on Risk
- Correlated with particular severe crash types

"Systemic safety improvement" means an improvement that is widely implemented based on **high-risk roadway features** that are correlated with **particular crash types**, **rather than crash frequency**.

- 23 USC 148 (a)(12) Systemic safety improvement.

http://safety.fhwa.dot.gov/systemic/index.htm

How Healthy is Your Road System?

Find out with systemic analysis

Systemic analysis is like a health screening for your road system. Just as your doctor identifies risk factors for illness, systemic analysis identifies locations that are

You don't have to wait until a crash occurs to make improvements!

IOW-COST COUNTERINGUISTICS SUCH US chevron signs or rumble strips.

Follow-Up

Track and evaluate safety improvements. Further remediation can be implemented as needed

V SIGHIC VS Systemwide

Systemic does not mean treating all locations. It allows agencies to treat the highest-risk sites within limited budgets

FHWA-SA-17-043

0

https://www.fhwa.dot.gov/innovation/everydaycounts/edc_4/ddsa_resources/ddsa_systemic_analysis.pdf

Rural Roadway Departure Fatalities

2014-2016 Annual Average of Rural RwDs by MHE

Quantitative Crash Analysis Methods Minnesota Example

The majority of severe crashes occurred on curves with 500'-1,500' radii.

Many Data Sources

"Do what you can, with what you have, where you are."

Qualitative Approach to Risk

Use qualitative ratings when needed:

- Good, Fair, Not-So-Good (curve radius, roadside, etc.)
- High, Medium, Low (traffic volumes, crash frequency, etc.)
- It is important to include the risk factors that are key to your roadway network

Qualitative Data – Presence of a Visual Trap

Prioritization – Example for Minnesota

				Crashe	es					Seve	re RoF	2								
Curve Count	ID	Corridor	Segment	Total	Severe	к	A	в	C PDO	ъκ	Α	Radius (ft)	s Length Curve (ft)	ADT	Intersection on Curve	Chevron s	Visual Trap	Rank	Proximity	Chevron Candidate
1	001A	1.01	CSAH 1	1	-	-	-	-	- 1	-	-	92	125	50	-	-	-			
2	001B	1.01	CSAH 1	-	-	-	-	-	-		-	557	422	50	-	-	-	*		
3	001C	1.01	CSAH 1	-	-	-	-	-	-		-	823	493	50	-	-	-	*		
4	001D	1.01	CSAH 1	-	-	-	-	-	-		-	379	359	50	-	-	-			
5	001E	1.01	CSAH 1	-	-	-	-	-	-		-	669	456	50	-	-	-	*		
6	001F	1.01	CSAH 1	-	-	-	-	-	-		-	270	431	50	-	-	-			
7	001G	1.01	CSAH 1	-	-	-	-	-	-		-	314	324	50	-	-	-			
8	001H	1.01	CSAH 1	-	-	-	-	-	-		-	545	239	50	-	-	-	*		
9	001I	1.01	CSAH 1	-	-	-	-	-	-		-	459	225	50	-	-	-			
10	001J	1.01	CSAH 1	-	-	-	-	-	-		-	368	274	50	-	-	-			
11	001K	1.01	CSAH 1	1	-	-	-	-	- 1	-	-	318	390	50	-	-	-			
12	001L	1.01	CSAH 1	-	-	-	-	-	-		-	267	399	50	-	Yes	-			Installed
13	001M	1.01	CSAH 1	-	-	-	-	-	-		-	1,475	345	50	-	-	-	*		
14	001N	1.01	CSAH 1	-	-	-	-	-	-		-	763	578	130	Yes	-	-	**		
15	001O	1.01	CSAH 1	-	-	-	-	-	-		-	859	353	210	Yes	-	-	**		
16	002A	2.02	CSAH 2	1	-	-	-	1	-		-	583	752	930	-	-	-	**	Yes	Yes
17	002B	2.02	CSAH 2	-	-	-	-	-	-		-	584	635	930	Yes	-	-	***	-	Yes
18	002C	2.02	CSAH 2	-	-	-	-	-	-		-	799	665	930	Yes	-	-	***	-	Yes
19	002D	2.02	CSAH 2	-	-	-	-	-	-		-	963	626	930	-	-	-	**	Yes	Yes
20	002E	2.02	CSAH 2	-	-	-	-	-	-		-	1,234	584	930	-	-	-	**	Yes	Yes
21	002F	2.02	CSAH 2	-	-	-	-	-	-		-	1,188	719	930	-	-	-	**	Yes	Yes
22	002G	2.02	CSAH 2	1	1	-	1	-	-		1	938	556	930	-	-	-	***	-	Yes
23	002H	2.02	CSAH 2	-	-	-	-	-	-		-	1,199	402	930	-	-	-	**	Yes	Yes
502	249ZH	249.01	CR 249	-	-	-	-	-	-		-	432	301	275	Yes	-	-		Yes	Yes
503	249ZI	249.01	CR 249	-	-	-	-	-	-		-	814	344	275	-	-	-		Yes	Yes
504	249ZJ	249.01	CR 249	-	-	-	-	-			-	800	685	275	-	-	-	*	Yes	Yes

- Complete census of 504 curves
- 32 High Priority Curves (6%)

			Chevrons in	Place
Stars	#	%	#	%
****	0	0%	0	0%
****	7	1%	2	0%
***	25	5%	4	1%
**	108	21%	1	0%
*	250	50%	2	0%
-	114	23%	5	1%
	504	100%	14	3%

HSIP: 23USC 148(c), 23 CFR 924.7

Why Local Road Safety Plans?

More than 75% of all roads are maintained by local agencies

Approximately 40-60% of fatalities occur on locally owned roadways

of the Interstate Highway System.

Source: FARS and FHWA Highway Statistics Series (2014)

Safety improvements on local roads can be determined through the LRSP process. Source: Delaware Valley Regional Planning Commission

Safety improvements on local roads can be determined through the LRSP process. Source: Delaware Valley Regional Planning Commission

Why Local Road Safety Plans?

- Greater awareness of road safety as a communication tool
- Development lasting partnerships
 - Prioritized investments

2015 Fatalities by Roadway in Minnesota

- Achievable investments Munic
- Supports grant applications; and
- Reduction in severe crashes

1st - Keep vehicles on the road

2nd - Reduce the potential for crashes

1st - Keep vehicles on the road

Improved curve delineation

- Retroreflective pavement markings and signs
- Lighting

Friction treatments in curves and other spot locations - HFST

Edge line, shoulder & center line rumble strips.

2nd - Reduce the potential for crashes

Shoulder Widening

SafetyEdgeSM

Maintained clear zones

Traversable roadside slopes

3rd - Minimize the severity

Breakaway Features

- Signs and luminaire supports
- Utility poles

Barriers to shield obstacles including:

- Trees and shrubbery
- Other fixed objects
- Slopes

Roadside and median barriers are designed to redirect and slow vehicles while shielding them from obstacles likely to result in a more severe crash, such as: Rigid fixed objects • Bodies of water Steep slopes

 Opposing traffic https://safety.fhwa.dot.gov/roadway_dept/ countermeasures/reduce_crash_severity/

The crashworthiness of barriers is evaluated

criteria is contained in the AASHTO Manual for Assessing Safety Hardware (MASH) 2016.

Countermeasures https://safety.fhwa.dot.gov/roadway_dept/ Resources ks other/hfst faos Eederal Highway Administration About Programs Resources Briefing Room Contact Search FHWA 🛛 👕 🐻 🔽 👥 in

ase Studies and Not

Qs, Links, and Othe Program Contact

Multimedia

FAOs

FHWA's SafetyEdge¹⁰ Design and Construction Guide

Policies & Practices

I. What is a High Friction Surface Treatment (HFST)?

A High Friction Surface Treatment is a cost-effective safety countermeasure in which a polish-resistant aggregate such as calcined (i.e., heat treated) bauche aggregate is bonded to the pavement surface using a polymer resin binder, significantly enhancing skid resistance and reducing crashes.

Description

 HFST places a layer of highly durable, and valuesion and polish-resistant aggregate over a thermoenting polymer renits blocker. The internet/opdiar and phylical properties of these aggregates make the overlay exceptionally instants to wear and polishing by traffic. The polymer renin binder locks the aggregate firmly in place, creating an externey durable surface capable of withstranding over the most enterme roadway demands, from connerting and havey braiking durable instruction capable of withinstanding even the most extreme readeway demands, from contenting and heavy balance has soon down existing avenue that uncertain capacity and the second second second form independent designs, such as sharp corvers and substandard suppretendents. Appropriate used on 1973 Lb definition, have a high political state value (PSV). Resea see question F111 uncert the successful FFST performance is field installations. Although serveral appretendents auccessful FFST performances is field installations. Although serveral appretents have been evaluated, only calcined balance apprecision for the installations. Although serveral apprecisions have been evaluated, only calcined balance apprecision for the installations. Although serveral apprecisions have been evaluated, only calcined balance apprecision for the installations.

2. What is the purpose of HFST?

HFST can enhance the ability of a road surface to provide adequate pavement friction for vehicles in ortical braking or comenting maneuvers. Maintaining the appropriate amount of pavement friction is critical for take driving. Compared to which can not the road and ensuring and taketoping datances, particularly in any stratement. In locations such as a brap horizontal curves, where vehicles apply higher side-there force to the pavement, the pavement surface lends to polish faster, reducing the available pavement friction. Reduced licition can contribute to vehicles lends conto of skidding usen they are traveling at excessive speed, make advept turns, or brake accessively. Higher faction, maintained with polis-vehical aggregates, high to key which can to accessively. Higher faction,

Low-Cost Treatments for Horizontal Curve Safety 2016

FHWA Safety Program

EDC-5 Offerings and Products

Technical Assistance

- Local and Regional Safety Action Plans
- Systemic analysis
- Peer exchanges
- Focus groups on implementation

Training

- Webinars
- Existing, revised, and new training
- Train-the-trainer
- LTAP resource packet
 - Handout

Products

Available Resources

Handout

Trading Cards

Low Cost Safety Improvement Videos (to be completed by May)

- Unpaved roads
- Enhanced Delineation of Horizontal Curves
- Longitudinal Pavement Markings
- Speed Management Techniques
 Systemic Safety Analysis Training
 NHI Combating Roadway Departures
 (1 day)

Planned

Webinar-Taking Action to Reduce Rural RwD Systemically– Spring 2019 Gap Assessments (in-person and virtual) Videos

- FoRRRwD overview
- Developing Action Plans Series
- Countermeasures Rumbles, Signing plus 4 others
- Case Studies

4-hour Combating RwD course

Assessment of Local Road Safety Funding, Training, and Technical Assistanc

Local Road Safety Challenges

Funding Constraints – challenges in providing upfront money or matching funds or the inability to have staff administering the projects **Limited State Funds and Resources** – lack of staffing at State Dot **Competing Interests** – Competing priorities and interests Lack of Data/Data Analysis Skills – lack of technical skills for data analysis Low Crash Rates – vast roadway networks spread out the traffic volume as compare to State route **Difficulty Securing Local Funding Matches** - difficulties in gaining support from local politicians and reaching consensus among stakeholders Lack of staff or expertise – staffing turnover, application process for Fed-Aid funding

https://safety.fhwa.dot.gov/local_rural/training/fhwasa13029/

LTAPs assisted with the EDC 5 initiative on Reducing Rural Roadway Departures

- Working with the Rural communities
 - Advocating for Funding
 - Action Plan Development
 - Contracting assistance
- Systemic Deployment of Safety
 Countermeasures
 - Data Compilation and Organization
 - Data and Risk Factor Analysis
- Mainstreaming Proven Safety Countermeasures

Focusing on Reducing Rural Roadway Departures

Mission - Reduce the potential for serious injury and fatal roadway departure crashes on **all public rural roads** by increasing the systemic deployment of proven countermeasures.

How can we help you?

EDC-5 Funding Opportunities:

Given State Transportation Innovation Council (STIC) Incentive

- ✓ Up to \$100,000 per STIC per year to standardize an innovation
- ✓ <u>https://www.fhwa.dot.gov/innovation/stic/</u>

□ Accelerated Innovation Deployment (AID) Demonstration

- ✓ Up to \$1 million available per year to deploy an innovation not routinely used
- ✓ <u>https://www.fhwa.dot.gov/innovation/grants/</u>

Your EDC Publications

Delivered weekly to your inbox.

Bi-monthly magazine style newsletter.

To Subscribe:

By Email: Visit <u>https://www.fhwa.dot.gov/innovation/</u> and enter your address in the **"Stay Connected"** section

OR

By Text: Send "FHWA Innovation" to 468311

Send your story ideas to <u>innovation@dot.gov</u>

Contact

Cate Satterfield

FHWA Office of Safety Cathy.Satterfield@dot.gov

Dick Albin FHWA Resource Center <u>Dick.Albin@dot.gov</u>

